

FACULTY OF BASIC AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION, 2016 / 2017 ACADEMIC SESSION

COURSE CODE: MTH 101

COURSE TITLE: General Mathematics I

COURSE LEADERS: Mrs. Akinwumi Titilayo & Mr. Olopade Isaac DURATION: 2 ½ Hours

INSTRUCTION:

(i)Candidates should answer ALL questions in SECTION ${f A}$ and any THREE questions in SECTION ${f B}$.

- (ii) Students are warned that possession of any unauthorized materials in an examination is a serious offence.
- (iii) Students are permitted to use ONLY a scientific calculator.

SECTION A

- 1. Given that α and β are the roots of a quadratic equation such that $\alpha + \beta = 3$ and $\alpha\beta = 2$, find the equation.
- 2. Solve the equation $x^2 + 8x + 3 = 0$
- 3. If $(16^2)^3 = 4^x$. What is the value of x?
- 4. What is the sum of 9^{th} and 12^{th} term of the sequence with nth term $4n^2 2(n-1)$?
- 5. If $\log_8 512 = x$. Find the value of x.
- 6. Expand $(4x+2a)^3$ using Pascal triangle.
- 7. If universal set $P = \{a, b, 4, 6, 7\}$ and $A = \{a, b, 4\}$. Find $(A^1)^1$
- 8. Find the last term of $(a-4b)^3$
- 9. Solve for x and y in x y = 1 and 3 = y 2x
- 10. Write the expression $\frac{2}{5-3i}$ in the form a+ib
- 11. The expression $(1 + \cos \theta)(1 \cos \theta)$ is equivalent to?
- 12. Solve the equation $8^{2x-1} = \frac{1}{512}$
- 13. If $\frac{2}{x^2-4} = \frac{P}{x-2} + \frac{Q}{x+2}$, find the values of P and Q
- 14. Find the value of $\log_8 72 \log_8 \left(\frac{9}{8}\right)$ without using logarithm table
- 15. Given $P = \{1, a, b, 3, 5\}$. How many subsets will P have?
- 16. An exponential sequence (G.P) is given by $\frac{1}{27}$, $\frac{3}{16}$,... what is the common ratio?

- 17. The expression $\frac{\tan \theta}{\sec \theta}$ is equivalent to?
- 18. Express (4-2i)(4+3i) in the form a+ib
- 19. P and Q are two sets such that n(P) = 17, n(Q) = 14 and $n(P \cap Q) = 5$. Find $n(P \cup Q)$
- 20. If $P = \{1,3,5,7\}, Q = \{2,4,6,8\}$ and $R = \{3,6,9,12\}$. Find $P \cap Q \cap R$
- 21. Find x if $\log_{10} 5 + \log_{10} (5x+1) + 2 = \log_{10} (x+5) + 2$
- 22. Find the coefficient of y^4 in $(x+3y)^4$
- 23. Insert three arithmetic means between x and y
- 24. Calculate the sum to infinity of $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$
- 25. Find (log₁₀ 100)(log₅ 5)(log₄ 9)(log₃ 2)
- 26. Find the sum of the first 2n terms of the G.P. 2, -6, 18, -54,...
- 27. If $\frac{3^7}{81} = 3^x$. Find the value of x.
- 28. If α and β are the roots of $4x^2 9x 16 = 0$. Find $\alpha + \beta$ and $\alpha\beta$
- 29. The 3rd and 6th terms of a linear sequence are 16 and 34 respectively. Find the first term 'a' and common difference 'd'.
- 30. Find the value of $\cos \beta$ if $\sin \beta = 5/13$ and $0 \le \beta \le 90$.

SECTION B: ANSWER ANY **THREE** QUESTIONS FROM THIS SECTION

- 1a) The coefficient of the Fifth, Sixth and Seventh terms in the expansion $(1+x)^7$, in ascending power of x, form a linear sequence (A.P). Find the common difference.
- 1b) If the roots of $2x^2 + 5x + 3 = 0$ are α and β , what is the value of $\alpha^2 + \beta^2$
- 2a) If α and β are the roots of $2x^2 3x 7 = 0$. Find the value of $(\alpha + 1)(\beta + 1)$
- 2b) Solve the equation $\log_2 x + \log_2(x+4) = 5$
- 3a) If $A = \{2,3,5,6,8,9,11,13,14,15\}$. List the members of the following subsets
 - (i) $P = \{Odd \ numbers \ of \ A\}.$ (ii) $Q = \{Even \ numbers \ of \ A\}.$
 - (iii) $R = \{ \text{Pr ime numbers of } A \}.$ (iv) $S = \{ \text{Numbers divisible by 3 in } A \}.$

Hence, find;

- (a) $(P^1 \cap Q^1) \cap R$ (b) $P \cap Q^1 \cap R \cap S^1$ (c) $(P \cap Q) \cup (P \cup Q)^1$
- 4a) Resolve $\frac{4x-17}{(x+4)(2x-3)}$ into partial fraction 4b) Prove that $\frac{2\cos^3\theta \cos\theta}{\sin\theta\cos^2\theta \sin^3\theta} = \cot\theta$